An Exponential Separation Between the Parity Principle and the Pigeonhole Principle

نویسندگان

  • Paul Beame
  • Toniann Pitassi
چکیده

The combinatorial parity principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a fixed bipartition of the vertices, there is no perfect matching between them. Therefore, it follows from recent lower bounds for the pigeonhole principle that the parity principle requires exponentialsize bounded-depth Frege proofs. Ajtai (1990) previously showed that the parity principle does not have polynomial-size bounded-depth Frege proofs even with the pigeonhole principle as an axiom schema. His proof utilizes nonstandard model theory and is nonconstructive. We improve Ajtai’s lower bound from barely superpolynomial to exponential and eliminate the nonstandard model theory. Our lower bound is also related to the inherent complexity of particular search classes (see Papadimitriou, 1991). In particular, oracle separations between the complexity classes PPA and PPAD, and between PPA and PPP also follow from our techniques (Beame et al., 1995).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Exponential Separation between the Parity Principle andthe

The combinatorial parity principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a xed bi-partition of the vertices, there is no perfect matching between them. Therefore, it follows from recent lower bounds for the pigeonhole principle that the parity principle requires exponential-size bounded-d...

متن کامل

An Exponential Separation between the Matching Principle and the Pigeonhole Principle

The combinatorial matching principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a fixed bipartition of the vertices, there is no perfect matching between them. Therefore, it follows from recent lower bounds for the pigeonhole principle that the matching principle requires exponential-size boun...

متن کامل

An Exponential Separation between the Matching Principleand

The combinatorial matching principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a xed bi-partition of the vertices, there is no perfect matching between them. Therefore , it follows from recent lower bounds for the pigeonhole principle that the matching principle requires exponential-size boun...

متن کامل

More on the relative strength of counting principles

We give exponential size lower bounds for bounded-depth Frege proofs of variants of the bijective (‘onto’) version of the pigeonhole principle, even given additional axiom schemas for modular counting principles. As a consequence we show that for bounded-depth Frege systems the general injective version of the pigeonhole principle is exponentially more powerful than its bijective version. Furth...

متن کامل

Matrix identities and the pigeonhole principle

We show that short bounded-depth Frege proofs of matrix identities, such as PQ = I ⊃ QP = I (over the field of two elements), imply short bounded-depth Frege proofs of the pigeonhole principle. Since the latter principle is known to require exponential-size bounded-depth Frege proofs, it follows that the propositional version of the matrix principle also requires bounded-depth Frege proofs of e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 80  شماره 

صفحات  -

تاریخ انتشار 1996